En el anterior artículo matemático había descrito el método de vasos comunicantes, que he creado para obtener indirectamente la integral definida de una función en un intervalo, basándome para ello en el principio físico de los vasos comunicantes.
Ahora doy un paso más siguiendo con esa filosofía de cálculo. En el paper que ahora presento estudio qué se le debe pedir a los parámetros involucrados en el método para que la sucesión de operadores que van suavizando la función sobre la que actúan hasta hacerla constante sea contractiva y Lipstchitziana en el espacio de Banach de las funciones cuadrado integrables L2, que también es un espacio de Hilbert.
De esta manera, si se cumplen estas condiciones se garantizará que en L2 el método de vasos comunicantes converge a una autofunción por el operador que hay en el infinito, es decir, un punto fijo de la sucesión de funciones, sobre la que opera la sucesión de operadores, y que será la función constante e idénticamente igual al valor medio del cálculo integral en todo el intervalo.
Lo que se consigue es una expresión para los parámetros a, b y para los valores que van tomando las funciones de la sucesión en los extremos del intervalo, obtenida a partir del radio espectral de ciertos operadores de los que depende la contractividad de la sucesión de funciones en L2, y que garantizan la convergencia del método de vasos comunicantes.
Este nuevo paper ha sido registrado en el Registro de la Propiedad Intelectual, y goza de las protecciones que dicho registro proporciona.
PARA INICIAR LA DESCARGA CLICAR AQUÍ : convergencia_vasos_comunicantes_en_L2