En este video que he grabado el otro día, estuve viendo con el osciloscopio la señal de audio de un receptor de radio FM, con el volumen casi al máximo. Se puede observar perfectamente que el amplificador de audio entra en su rango de funcionamiento no-lineal, pasando a saturarse, cuando el volumen topea la máxima tensión que puede caer entre el condensador de filtro y masa.
En ese instante el sonido se distorsiona, por no ser amplificado, al alcanzar la tensión ese máximo valor que decía antes. Al final del video aumento la amplitud de la escala en el eje vertical y paso al modo combinado, mostrando abajo la transformada FFT, que es el estimador espectral empleado. Todo estimador espectral parte del concepto de que nosotros no podemos ver la señal desde menos infinito hasta más infinito en la pantalla del osciloscopio, sino que lo que vemos es la señal en tiempo enventanada con un pulso cuadrado de anchura el período de la señal de sincronismo del eje horizontal. Esto en frecuencia no da la transformada de Fourier de la señal, que es lo que idealmente querríamos obtener, sino la convolución en frecuencia de una función sin pi.w/ pi.w, o sea sinc, con la transformada de Fourier de la señal total en tiempo. Además de ello se aprecia que el espectro estimado no tiene exclusivamente las componentes banda base de la onda (algo similar a un triángulo centrado en el cero de la frecuencia) sino como cabía esperar aparece distorsión armónica, precisamente por estarse saturando el amplificador y no funcionar en su régimen lineal.
El tema de utilizar distintas transformaciones de la señal en tiempo para ver su composición en frecuencia no resulta extremadamente difícil de explicar. Una función temporal, que en definitiva es un vector en su espacio vectorial, se puede expresar según distintas bases de vectores. En este caso tenemos la base de los impulsos en tiempo, en función de los que podemos expresar con una integral el vector (una integral es un caso límite de una combinación lineal de vectores), y también tenemos la base de los impulsos en frecuencia. Cada impulso en frecuencia, que es un vector o señal, si lo expresamos en la base de los impulsos en tiempo tenemos una señal senoidal, que es una frecuencia pura. El espectro de una señal no es otra cosa que ver la señal o vector en otra base de vectores linealmente independientes distinta. Derivado de esta filosofía aparecen propiedades como el teorema de Parcival, que dice que la energía en frecuencia (La norma al cuadrado del vector en la base de la frecuencia) de una señal coincide con la energía en tiempo (La norma al cuadrado del vector en la base del tiempo). Ésto no es difícil de asimilar si tenemos en cuenta que el vector es en ambos casos el mismo y que en ambos casos usamos el mismo producto escalar, esto es, la integral entre menos infinito y más infinito del producto de la señal por el conjugado de esa misma señal, ya sea en tiempo o en frecuencia, y que arroja como resultado la norma al cuadrado o energía de la señal. En todo momento estamos hablando de un único vector que es la señal, pero a este vector lo podemos referenciar respecto a distintas bases. Lo mismo ocurre con otras transformadas matemáticas que se emplean en telecomunicaciones, como la transformada de Laplace, empleada para señales en las que existe un amortigüamiento, la transformada Wavelet, que emplea como vectores de la base las ondículas o señales chirp, y que permiten elegir la granularidad en nuestro análisis en frecuencia, o la transformada Z.